

What is AOP?

Procedural Programming
Abstract program into procedures.

Object-Oriented Programming
Abstract program into objects.

Aspect-Oriented Programming
Abstract program into aspects.

What is Aspect?

Aspects are stand-alone modules that allow the
programmer to express crosscutting concerns in.

Crosscutting concerns are concerns of a program
which affect (crosscut) other concerns.

A concern is any piece of interest or focus in a program.

separation of concerns (SoC) is the process of breaking
a computer program into distinct features that overlap
in functionality as little as possible.

What is Crosscutting Concerns?

void transfer(Account from, Account to, int amount) {
if (!getCurrentUser().canPerform(OP_TRANSFER)) {

throw new SecurityException();

}

if (amount < @) { throw new NegativeTransferException(); }
Transaction tx = database.newTransaction();

try {
if (from.getBalance() < amount) {

throw new InsufficientFundsException();

}

from.withdraw(amount); to.deposit(amount);

tx.commit();
systemLog.logOperation(OP_TRANSFER, from, to, amount);

} catch(Exception e) {
tx.rollback();

throw e;

s

PN g e B -hJ%?YH».W .uh Q

CC not properly encapsulated

-~=‘-

Implementation
Module

Abstract Concerns into Aspects

Security

Logging l
Concern

n
Identifier I

Persistence

Aspect]

A seamless aspect-oriented extension to the Java
programming language.
The widely-used de-facto standard for AOP.

Born at Xerox Palo Alto Research Center (PARC) and

later available in Eclipse Foundation open-source
projects.

Java-like syntax and IDE integration.
Easy to learn and use.

Join Point Model

Join Points -- Points in a running program where
additional behavior can be usefully joined.

Pointcuts -- Ways to specify (or quantify) join points.
A pointcut determine whether a given join point
matches.

Advice -- A means of specifying code to run at a join
point.

A Simple Logging Example

public aspect TraceAspect {
private Logger logger = Logger.getLogger("trace");
pointcut traceMethods()
: execution(* *.*(..)) && !within(TraceAspect);
before() : traceMethods() {
Signature sig =
thisJoinPointStaticPart.getSignature();
_logger.logp(Level.INFO,
sig.getDeclaringType().getName(),
sig.getName(), "Entering");

Weaving

Weaver

ements
Concern

Identifier

Req\l.lf

Related Concept: Visitor Pattern

class Wheel implements Visitable {

[

public void accept(Visitor visitor) {
visitor.visit(this);

Related Concept: Mixin

class GPA
include Comparable

def <=>(another)
Ho i B=2
end
end

a, b = cat.gpa, dog.gpa
cat.bg if cat.gpa > dog.gpa

Related Concept: Policy-based Design

template
<
typename T,
template <class> class OwnershipPolicy =
RefCounted,
class ConversionPolicy =
DisallowConversion,
template <class> class CheckingPolicy =
AssertCheck,
template <class> class StoragePolicy =
DefaultSPStorage
>
class SmartPtr;

Example: cco8 CFF 1st

equip the spider with cache

def equip(spider)
orig get page = spider.class.instance _method :get page
dir = @dir

spider.define_singleton _method :get page do |url]
filename = dir + url
if File.exists? filename
File.open(filename) { |file| file.read }
else
page = orig get page.bind(self).call(url)
File.open(filename, "w") { |file| file.write page }
page
end
end
end

Example: Rails filter

before filter
before filter
before filter
before filter

:determine_locale
:configure charsets

:load personal preferences
:login required,

:except => [:index, :login]

before init gettext :default locale

Adoption Risks

Lack of tool support, and widespread education.

Unfriendly to refactor: something as simple as
renaming a function can lead to an aspect no longer
being applied leading to negative side effects.

Security concern: injecting bad code.

