
Ruby Debugger for Ruby 1.9

Zhang Chiyuan
pluskid@gmail.com

March 31, 2008

Abstract

Most experienced programmers admit that debug is boring yet taking up
most of our developing time. Using TDD (Test-driven development) can reduce
the pain dramatically, but we still need to debug sometimes.

The goal of this project is to improve the debugging experience of the Ruby
language. More specifically, the goal is either port the ruby-debug gem to Ruby
1.9 or implement a Rubinius like full speed debugger for Ruby 1.9.

Contents

1 The Project 2

2 Benefits to the Community 4

3 Milestones 4

4 Timeline 4
4.1 Remote debugging . 5
4.2 Kernel#binding_n . 5
4.3 rdebug . 5
4.4 Off for final examination . 5
4.5 Porting . 5
4.6 Instruction replacement . 5
4.7 Breakpoint for current file/class/method 6
4.8 Breakpoint for any file/class/method . 6
4.9 Google “pencil down” day . 6
4.10 Instruction replacement style debugger 6
4.11 Front-end brainstorm and other . 6

5 About Me 6
5.1 Eligibility . 6
5.2 Passion . 7
5.3 Ability . 7

1

1 The Project

Being very dynamic and flexible is the biggest feature of Ruby. It generally make
our life better. However, it is really a double-edged sword. It is very hard to find
out what’s wrong in the code when something strange happened. For example,
there are dozens of ways to define a method for an object, you never know when
your class is accidentally monkey patched. So debugging in dynamic languages are
especially important.

There are general two ways to debug in Ruby:

• Run the ruby interpreter inside gdb. This is usually used to debug the core
Ruby code or some c extensions. gdb itself is a very powerful and extendable
debugger with many third party tools. For example, attaching to a running
process is easy in gdb, scripts can be written to enable evaluating Ruby code
directly in the gdb console[1, 2].

• Run a debugger on the Ruby script level. Ruby comes with a debugger (de-
bug.rb), but it’s pretty minimal, yet slow on non-trivial applications[3]. A
good alternative is the ruby-debug[4] gem, which is a faster implementation
of the standard debug.rb using a native extension with a new hook Ruby C
API. Moreover, it has many nice features like supporting multiple IDE front-
ends and remote debugging, etc.

The focus of this project is the latter: debugging on the Ruby level, or more specif-
ically, Ruby 1.9.

Debugging in Ruby is a little bit weird because there’s very few debugging sup-
port built in with the interpreter. There’s even no primitives for accessing stack
frames. One of the reason why debug.rb is so slow is creating and saving frame
information along with a binding to access variables. Things are going to get even
weirder since Ruby 1.9. There may be mixed levels of debugging.

Despite the lack of built in support, there’re several decent debugger available:

• ruby-debug, as I mentioned earlier, this is a faster implementation of the
standard debug.rb using a native extension with a new hook Ruby C API.

• Cylon, the debugger of Ruby In Steel[5], claimed to be the fastest and the
most functional debugger available. However, this is a commercial one.

• Rubinius debugger, Rubinius[7] comes with a instruction replacement de-
bugger. By this way, no overhead is added to normal statements.

The problem is: none of them works with Ruby 1.9. It is necessary for Ruby 1.9
to have a decent debugger. While try to re-invent the wheel to make a brand-
new debugger from scratch totally violates the DRY (Don’t Repeat Yourself) rule of
Ruby community, I noticed that some progress[6] has been made towards porting
ruby-debug to Ruby 1.9.

So I would like to propose this project: to port ruby-debug to Ruby 1.9 and
investigate more ideas like instruction replacement.

2

Both the language and the implementation have changed dramatically since
Ruby 1.9. A totally different VM is used. Furthermore, the internal structure of
the new VM (YARV) seems to be still evolving and the access to that hasn’t been
officially exposed to the degree that would be needed for a straightforward port
of ruby-debug. So porting to Ruby 1.9 isn’t a easy task like simply replacing all
File.exists? with File.exist?.

If everything goes well, I would also like to try out some new ideas. For exam-
ple, the instruction replacement debugging. The Rubinius’s VM is totally different
from that of MRI or YARV. I guess it has plenty of support for debugging in the VM
so that when instruction replacement is used to yield the debugger, the other nor-
mal code can run with full speed[8]. But we need to collect frame information in
Ruby, that won’t be full speed any longer.

However, this is still interesting. Even not full speed, avoiding the trace hook
overhead is still a big step. This is not only about the speed of the debugger.
Debugger will affect the original code, sometimes bugs will disappear as soon as
you start the debugger (we generally call them Heisenbug). So making minimal
change is sometimes required.

Besides the idea of instruction replacement, there are various cool things that
come up in my mind when I write this proposal:

• Dependency backtracking. For example, you can track back where the vari-
able bas been modified. CodeSurfer[9] can do this kind of things, though
it is a static analyzing tool. Dynamic analyzing is also possible as is done in
WHYLINE[10] for the Alice[11] language.

• Backward debugging. You might be familiar with the GDB command ‘next’
(or simply ‘n’), but have you considered a ‘prev’ command? It is not impos-
sible, ODB[12] implemented this for Java, so why not Ruby? In fact, there’s
already some sort of support in the ruby-debug’s Emacs front-end.

• Visualized debugging, A concrete example is DDD (Data Display Debugger).
For example, you can display the content and relationship of each item of a
linked list from the debugger. It is very useful to debug complex structures.
This should be considered in the front-end part.

Another example is BlueJ[13] for Java. This is related but not necessarily for
debugging. BlueJ is used for teaching: objects are visible shapes (UML, in
fact) on the screen; calling a method is simply right clicking on that object
and selecting the method.

• etc.

The 3-month time is very limited for me to try out all those ideas. However, I’m
considering this as the first step into the community. The will definitely be further
developments and maintenance after the Google Summer of Code, so on the other
hand, the time is not limited.

3

2 Benefits to the Community

As I mentioned earlier, debugging is a very common task for programmers. A good
debugger is especially important for programmers of a dynamic language like Ruby.

So almost all projects of the community can benefit from a better debugger.
Ruby 1.9 is coming out, becoming stable and the next big thing! So a decent
debugger is needed.

3 Milestones

With respect to the time schedule of Google Summer of Code, I would like to set
two big milestones for this summer: porting ruby-debug to Ruby 1.9 and adding
instruction replacement mechanism. I don’t know much of how ruby-debug works
right now and I was setting many vague milestones that can never be measured
(like “understanding the ruby-debug code”) in my original proposal. Fortunately,
Rocky Bernstein gave me many suggestions and even an overview of what need to
be done to finish the work. I set those milestones on top of his description:

• Porting ruby-debug to Ruby 1.9:

– Remote debugging support in Ruby 1.9.

– Write a Kernel#binding_n for Ruby 1.9. This is an important reason
that makes ruby-debug faster than debug.rb in Ruby 1.8.

– Invoking debugger from the outside, like rdebug.

– Ideas on the front-ends. Something can be learned from user interface
of the Cylon debugger of Ruby In Steel[5].

• Instruction replacement mechanism.

– Saving the original instruction somewhere and restore later.

– Disassembly of instructions at the current stopping point:

∗ setting a breakpoint inside the current file/class/method.
∗ and then in general (any file/class/method).

– Adding the rest of ruby-debug on top of instruction replacement.

4 Timeline

Based on the milestones above and my own time schedule, I created the timeline
before. In general, I don’t have such a long 3-month summer vacation like those
students study in the USA. I’ll take my final examination during June 16 and July
2. However, I don’t have any summer classes, and I’m not planning any traveling,
so I can work full time for this project in my summer vacation after my final exam-
ination. I would also like to start before May 26 (students should start coding at
this day on the GSoC timeline).

4

4.1 Remote debugging
April 19⇒ May 11

I should get familiar with the coding conventions and other stuffs before getting
to write codes. I should port the remote debugging feature of ruby-debug to Ruby
1.9 at the of this period.

4.2 Kernel#binding_n

May 12⇒ May 28

Kernel#binding_n for Ruby 1.9 should be implemented during this period.
This necessary for porting ruby-debug to Ruby 1.9.

4.3 rdebug
May 29⇒ June 11

Invoking the debugger from the outside should be supported at the end of this
period.

4.4 Off for final examination
June 12⇒ July 2

My final examination starts on June 16. I’ll start to prepare for it several days
before that. I’ll try to devote more time to my courses instead of this project in this
period.

4.5 Porting
July 3⇒ July 16

Since the parts that are most specific the the internal Ruby implementation are
ported to Ruby 1.9. I can start to port the other parts. This is a relative easy task if
the code of ruby-debug is well abstracted.

Note that Google’s mid-term evaluation of this project is on July 7. We should
have most parts of ruby-debug ported to Ruby 1.9 before that day. However, at
the end of this period (instead of July 7), we should have a working version of
ruby-debug with all features of the Ruby 1.8 version supported.

4.6 Instruction replacement
July 17⇒ July 29

After porting ruby-debug to Ruby 1.9. We can have a look at instruction re-
placement mechanism now. During this period, I should implement a way to re-
place the instruction (or bytecode) at a particular position with the specific one for
debugging, saving the original instruction and restore it when coming back from
the debugger.

5

4.7 Breakpoint for current file/class/method

July 30⇒ August 7

Setting a breakpoint inside the current file/class/method should be implemented
during this period.

4.8 Breakpoint for any file/class/method

August 8⇒ August 17

Setting a breakpoint in any file/class/method should be implemented during
this period.

4.9 Google “pencil down” day

August 18⇒ August 21

The “pencil down” day on the Google Summer of Code timeline is August 18.
We should check the status of the project and prepare materials for Google to eval-
uate the project. At this point, we should have a ruby-debug for Ruby 1.9 and the
core parts of an instruction replacement style debugger.

4.10 Instruction replacement style debugger

August 22⇒ September 5

On top of the instruction replacement debugger core, adding the rest facility to
make it a real debugger.

4.11 Front-end brainstorm and other

September 6⇒ ?

Brainstorm on improving the front-end support, other cool ideas, further devel-
opments and maintaining.

5 About Me

I’ve been using a general description of myself in my original proposal. Until Rocky
Bernstein asked me some very specific questions, I realized that I need to provide
more information on why I am suitable for this project.

5.1 Eligibility

I’m a junior student of Zhejiang University in China. I’m major in Computer Science
and Technology. I’ve read the FAQ and I’m eligible to participate as a student in
Google Summer of Code.

6

5.2 Passion

I love open source. I admire the idea of sharing source code with each other. I first
got to know Linux about three years ago. Then I learned about Emacs, Mozilla,
GNU and various open source projects. I’ve been very active in the local community
of open source and Linux.

I have been using various open source programs. I love them because I can
just patch the code to solve the problem myself. On the other hand, when I have
problems, the community is always willing to help me. I’ve report bugs of various
tools that I used. I myself also have some open source goodies. Here are some
examples:

• RMMSeg[14]: A Ruby implementation of the maximum-matching Chinese
word segmentation algorithm.

• YASnippet[15]: I call it Yet Another Snippet extension for Emacs because
there are so many of them. Originally I borrowed the code of snippet.el
and wrote smart-snippet[16]. But I finally design and write YASnippet from
scratch. I’m quite confident about YASnippet. If you are a Emacser, do have
a try! :D

• kid-scheme[17]: A scheme interpreter written in Ruby. This is not for real
world production. In fact, I write it in less than two days. But I learned a lot
from that, this is really a rite of passage for everyone who learns scheme.

I care very much about the community. Many users of my open source goodies
describe me as very responsive.

I got to know Ruby about one year ago. I like it very much. But as I learned
more about it, I know there are still many improvements needed (e.g. Ruby is
usually considered as a very slow language). I would like to make things better
through this project.

5.3 Ability

I’m quite familiar with Ruby programming. However, it seems this there won’t be
much Ruby code in this project. Instead, most of the code may be written in C.
Fortunately, I’m familiar with the C programming language as well. I’ve learned C
and C++ in our courses. Though I’d prefer writing code in a dynamic language,
writing some medium sized program in C/C++ isn’t impossible for me. I have
written several course projects (with one of my roommate) of 4000 to 5000 lines
of C/C++ code (and most of them were A+).

I’ve also tried to write an extension in C for my Ruby Chinese word segmen-
tation implementation – RMMSeg[14]. Though finally I discard the result, I’ve
learned a lot in the process:

• I learned how to write a C extension for Ruby.

• I experienced that premature optimization is the root of all evil[18].

7

• I learned how to debug Ruby in gdb.

• I understand the implementation of Hash in Ruby 1.8, found a bug[19] of
Fixnum overflow in calculating hash code and sent a patch to the Ruby com-
munity. The patch was accepted with some modifications to make it better.

Finally, I’ll mention my blog[20] (mainly Chinese) that I’m maintaining since last
year. And my resume[21] is also available online if you would like to have a look.
I always use the nickname ‘pluskid’ in mailinglist or IRC channels.

References

[1] Jamis Buck, Inspecting a live Ruby process,
http://weblog.jamisbuck.org/2006/9/22/inspecting-a-live-ruby-process

[2] Mauricio Fernandez, Inspecting a live Ruby process, easier if you cheat,
http://eigenclass.org/hiki.rb?ruby+live+process+introspection

[3] brian, Ruby Debug Basics,
http://brian.maybeyoureinsane.net/blog/2007/05/07/ruby-debug-basics-screencast/

[4] ruby-debug homepage, http://rubyforge.org/projects/ruby-debug/

[5] Ruby In Steel homepage, http://www.sapphiresteel.com/

[6] svn repository of debug-1.9,
http://rocky-hacks.rubyforge.org/svn/debug-1.9/trunk/

[7] Rubinius homepage, http://rubini.us/

[8] Werner Schuster, Inside the full speed Rubinius debugger,
http://www.infoq.com/news/2008/01/rubinius-full-speed-debugger

[9] CodeSurfer homepage,
http://www.grammatech.com/products/codesurfer/overview.html

[10] WHYLINE homepage, http://www.cs.cmu.edu/ NatProg/whyline.html

[11] Alice homepage, http://www.alice.org/

[12] ODB homepage, http://www.lambdacs.com/debugger/debugger.html

[13] BlueJ homepage, http://www.bluej.org/

[14] RMMSeg homepage, http://rmmseg.rubyforge.org/

[15] YASnippet homepage, http://yasnippet.googlecode.com/

[16] smart-snippet homepage, http://smart-snippet.googlecode.com/

[17] kid-scheme homepage, http://kid-scheme.googlecode.com/

8

[18] Premature Optimization, http://c2.com/cgi/wiki?PrematureOptimization

[19] Zhang Chiyuan, Fixnum Overflow in Ruby’s Hash Implementation,
http://pluskid.lifegoo.com/?p=286

[20] My Blog, http://pluskid.lifegoo.com/

[21] My Resume,
http://pluskid.lifegoo.com/upload/personal/resume.pdf

9

