
By gbb21
MSTC.YQ

Life-time object
oriented

Not every thing is
object

Strong type and type
erasure

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info
constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_Class;
u2 super_Class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info
attributes[attributes_count];

}

 u1,u2,u4 are inner
types of JVM,big-endian

 Keep all the meta data
 A class would be
compiled into a class
file, class structure
could be persistently
kept

• A.class
• B.class
• B$C.class

[Comp.java]

Class A{}

Class B{

Class C{}

}

 primitive types
• Allocated on stack
• Fast speed

 wrapped types
• Allocated on heap
• Coherence
• OOP traits

 size is fixed
 numeric type is
signed

 Boxing and unboxing
 Example

int Val = 3;
ArrayList<Integer>
List = new
ArrayList<Integer>();

List.add(Val);
Val = List.get(0);Integerint

class T {
Final int i = 0; // instance variable

initialization

static int version = 3; // class variable
init

String id = "x432"; // initialize object
variable

static int[] a = new int[100];
Static { // Static initialization

For(int i = 0; i < 100; i++)
a[i] = i;

}

Public T(int Arg) {}

Public T(){

this(3); // Call other constructor
}

}

• Everything is
in the class

• All the member
variable could
be initialized
to zero

• Static block
could run a
piece of code
to initialize
static variable
before
construction

• Could call
overloading
constructor in
constructor

Class\memb
er

Private Protected Internal
protectedinte

rnal
public

internal
Only In
the class
itself

The derived
classes in
assembly

In the
assembly

In the
assembly

In the
package

public
Only In
the class
itself

The derived
classes

In the
assembly

In assembly;
derived

classes out
of assembly

Anywhere

Class\member Private
(non-

modified)
Protected public

(non-
modified)

Only in the
class itself

In the
package

In the package
In the
package

public
Only in the
class itself

In the
package

In the package;
Derived classes
out of package

Anywhere

Single inheritance model [FFC#]
All classes are derived from “Object”
[FFC#]

All functions in classes are “virtual”
Inner classes must be instanced with
the pointer to outer object

Loading time

Static members

Static block

Constructing time

Recursively call
super class

member variables

Constructor

class Object {

Class getClass();

int hashCode();

void wait();

void wait(long);

void wait(long,int);

void notify();

void notifyAll();

Object clone();

boolean equals();

void finalize();

}

Object

class

Class

hash

lock
VMLock

GC

Profiling

Handle Space Object Space

VMLock

GCclass

object
DATA

Lock Table

hash

The JVM is very much stack-oriented.
A stack frame is subdivided into two
parts
• a Local Variables section:
 store all the local variables and
arguments

• an Operand Stack section:
 method’s instructions operate here.

 Almost all JVM instructions are stack-based;

 Example an “add” instruction pops the top two
elements of the stack, adds them, and pushes the sum
back onto the stack.

this

arguments

local

GC OVERVIEW REFERENCE INTENSITY

 Incremental collection
 Trace all the available

object from reference
tree (Not reference
counting)

 Avoid the circulate
reference

 High cost of the
collecting operation

Strong
• Unreachable object

Weak

• Soft reference
• Weak reference
• Phantom Reference

non
• Unreachable object

Objec
t

Class

“Class”
Ins

“Object”

“A”
Class

“Cla
ss”
Class

“Class”
Ins “A”

“Class”
Ins

“Class”

“A”
Ins “a”

“A”
Ins “b”

“Class” object
• “Object” class has a static pointer to a
“Class object”

• All of the type conversion will be checked by
RTTI (throw exception)

• The generic programming of java is implemented
by RTTI
 ArrayList<Integer> Arr = new ArrayList<Integer>();

 Integer Var = Arr.get();

 ArrayList Arr = new ArrayList();

 Integer Var = (Integer) Arr.get();

Call
O.Fun()

Get the Type
name of O, and
Load from file

T.Class get
the Class

object of this
type

Check whether it implemented
the Fun() method, if not ,

get its super class and check
till the one has implemented

Pass argument
and pointer
to O object
to function

The first time use of some class, the
class is loaded from .class file

Load only what you need, save memory
Runtime link, every class or component
could be replaced easily

Select piece of code
and compile it for
faster speed

